`
810364804
  • 浏览: 784003 次
文章分类
社区版块
存档分类
最新评论

JAVA垃圾回收机制分析

 
阅读更多
引言

  Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new、newarray、anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放。一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆。垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。
我们知道,许多程序设计语言都允许在程序运行期动态地分配内存空间。分配内存的方式多种多样,取决于该种语言的语法结构。但不论是哪一种语言的内存分配方式,最后都要返回所分配的内存块的起始地址,即返回一个指针到内存块的首地址。

垃圾收集的算法分析

  Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾收集算法一般要做2件基本的事情:(1)发现无用信息对象;(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。

  大多数垃圾回收算法使用了根集(root set)这个概念;所谓根集就量正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。下面介绍几个常用的算法。

  1、 引用计数法(Reference Counting Collector)

  引用计数法是唯一没有使用根集的垃圾回收的法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。

  基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须 实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量,计数器加1,而每次现有对象出了作用域生,计数器减1。

  2、tracing算法(Tracing Collector)

  tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器.

  3、compacting算法(Compacting Collector)

  为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来 的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。  

  4、copying算法(Coping Collector)

  该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成 一个对象 面和多个空闲面, 程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾 收集就从根集中扫描活动对象,并将每个 活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。

  一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。

  5、generation算法(Generational Collector)

  stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代(generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。

  6、adaptive算法(Adaptive Collector)

  在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
当已经分配的内存空间不再需要时,换句话说当指向该内存块的句柄超出了使用范围的时候,该程序或其运行环境就应该回收该内存空间,以节省宝贵的内存资源。


在C,C++或其他程序设计语言中,无论是对象还是动态配置的资源或内存,都必须由程序员自行声明产生和回收,否则其中的资源将消耗,造成资源的浪费甚至死机。但手工回收内存往往是一项复杂而艰巨的工作。因为要预先确定占用的内存空间是否应该被回收是非常困难的!如果一段程序不能回收内存空间,而且在程序运行时系统中又没有了可以分配的内存空间时,这段程序就只能崩溃。通常,我们把分配出去后,却无法回收的内存空间称为"内存渗漏体(Memory Leaks)"。

以上这种程序设计的潜在危险性在Java这样以严谨、安全著称的语言中是不允许的。但是Java语言既不能限制程序员编写程序的自由性,又不能把声明对象的部分去除(否则就不是面向对象的程序语言了),那么最好的解决办法就是从Java程序语言本身的特性入手。于是,Java技术提供了一个系统级的线程(Thread),即垃圾收集器线程(Garbage Collection Thread),来跟踪每一块分配出去的内存空间,当Java 虚拟机(Java Virtual Machine)处于空闲循环时,垃圾收集器线程会自动检查每一快分配出去的内存空间,然后自动回收每一快可以回收的无用的内存块。



垃圾收集器线程是一种低优先级的线程,在一个Java程序的生命周期中,它只有在内存空闲的时候才有机会运行。它有效地防止了内存渗漏体的出现,并极大可能地节省了宝贵的内存资源。但是,通过Java虚拟机来执行垃圾收集器的方案可以是多种多样的。

下面介绍垃圾收集器的特点和它的执行机制:

垃圾收集器系统有自己的一套方案来判断哪个内存块是应该被回收的,哪个是不符合要求暂不回收的。垃圾收集器在一个 Java程序中的执行是自动的,不能强制执行,即使程序员能明确地判断出有一块内存已经无用了,是应该回收的,程序员也不能强制垃圾收集器回收该内存块。程序员唯一能做的就是通过调用System. gc 方法来"建议"执行垃圾收集器,但其是否可以执行,什么时候执行却都是不可知的。这也是垃圾收集器的最主要的缺点。当然相对于它给程序员带来的巨大方便性而言,这个缺点是瑕不掩瑜的。

垃圾收集器的主要特点有:

1.垃圾收集器的工作目标是回收已经无用的对象的内存空间,从而避免内存渗漏体的产生,节省内存资源,避免程序代码的崩溃。

2.垃圾收集器判断一个对象的内存空间是否无用的标准是:如果该对象不能再被程序中任何一个"活动的部分"所引用,此时我们就说,该对象的内存空间已经无用。所谓"活动的部分",是指程序中某部分参与程序的调用,正在执行过程中,尚未执行完毕。

3.垃圾收集器线程虽然是作为低优先级的线程运行,但在系统可用内存量过低的时候,它可能会突发地执行来挽救内存资源。当然其执行与否也是不可预知的。

4.垃圾收集器不可以被强制执行,但程序员可以通过调用System. gc方法来建议执行垃圾收集器。

5.不能保证一个无用的对象一定会被垃圾收集器收集,也不能保证垃圾收集器在一段Java语言代码中一定会执行。因此在程序执行过程中被分配出去的内存空间可能会一直保留到该程序执行完毕,除非该空间被重新分配或被其他方法回收。由此可见,完全彻底地根绝内存渗漏体的产生也是不可能的。但是请不要忘记,Java的垃圾收集器毕竟使程序员从手工回收内存空间的繁重工作中解脱了出来。设想一个程序员要用C或C++来编写一段10万行语句的代码,那么他一定会充分体会到Java的垃圾收集器的优点!

6.同样没有办法预知在一组均符合垃圾收集器收集标准的对象中,哪一个会被首先收集。

7.循环引用对象不会影响其被垃圾收集器收集。

8.可以通过将对象的引用变量(reference variables,即句柄handles)初始化为null值,来暗示垃圾收集器来收集该对象。但此时,如果该对象连接有事件监听器(典型的 AWT组件),那它还是不可以被收集。所以在设一个引用变量为null值之前,应注意该引用变量指向的对象是否被监听,若有,要首先除去监听器,然后才可以赋空值。

9.每一个对象都有一个finalize( )方法,这个方法是从Object类继承来的。

10.finalize( )方法用来回收内存以外的系统资源,就像是文件处理器和网络连接器。该方法的调用顺序和用来调用该方法的对象的创建顺序是无关的。换句话说,书写程序时该方法的顺序和方法的实际调用顺序是不相干的。请注意这只是finalize( )方法的特点。

11.每个对象只能调用finalize( )方法一次。如果在finalize( )方法执行时产生异常(exception),则该对象仍可以被垃圾收集器收集。

12.垃圾收集器跟踪每一个对象,收集那些不可到达的对象(即该对象没有被程序的任何"活的部分"所调用),回收其占有的内存空间。但在进行垃圾收集的时候,垃圾收集器会调用finalize( )方法,通过让其他对象知道它的存在,而使不可到达的对象再次"复苏"为可到达的对象。既然每个对象只能调用一次finalize( )方法,所以每个对象也只可能"复苏"一次。

13.finalize( )方法可以明确地被调用,但它却不能进行垃圾收集。

14.finalize( )方法可以被重载(overload),但只有具备初始的finalize( )方法特点的方法才可以被垃圾收集器调用。

15.子类的finalize( )方法可以明确地调用父类的finalize( )方法,作为该子类对象的最后一次适当的操作。但Java编译器却不认为这是一次覆盖操作(overriding),所以也不会对其调用进行检查。

16.当finalize( )方法尚未被调用时,System. runFinalization( )方法可以用来调用finalize( )方法,并实现相同的效果,对无用对象进行垃圾收集。

17.当一个方法执行完毕,其中的局部变量就会超出使用范围,此时可以被当作垃圾收集,但以后每当该方法再次被调用时,其中的局部变量便会被重新创建。

18.Java语言使用了一种"标记交换区的垃圾收集算法"。该算法会遍历程序中每一个对象的句柄,为被引用的对象做标记,然后回收尚未做标记的对象。所谓遍历可以简单地理解为"检查每一个"。

19.Java语言允许程序员为任何方法添加finalize( )方法,该方法会在垃圾收集器交换回收对象之前被调用。但不要过分依赖该方法对系统资源进行回收和再利用,因为该方法调用后的执行结果是不可预知的。

通过以上对垃圾收集器特点的了解,你应该可以明确垃圾收集器的作用,和垃圾收集器判断一块内存空间是否无用的标准。简单地说,当你为一个对象赋值为null并且重新定向了该对象的引用者,此时该对象就符合垃圾收集器的收集标准。

判断一个对象是否符合垃圾收集器的收集标准,这是SUN公司程序员认证考试中垃圾收集器部分的重要考点(可以说,这是唯一的考点)。所以,考生在一段给定的代码中,应该能够判断出哪个对象符合垃圾收集器收集的标准,哪个不符合。下面结合几种认证考试中可能出现的题型来具体讲解:

Object obj = new Object ( ) ;

我们知道,obj为Object的一个句柄。当出现new关键字时,就给新建的对象分配内存空间,而obj的值就是新分配的内存空间的首地址,即该对象的值(请特别注意,对象的值和对象的内容是不同含义的两个概念:对象的值就是指其内存块的首地址,即对象的句柄;而对象的内容则是其具体的内存块)。此时如果有 obj = null; 则obj指向的内存块此时就无用了,因为下面再没有调用该变量了。

请再看以下三种认证考试时可能出现的题型:

程序段1:

1.fobj = new Object ( ) ;

2.fobj. Method ( ) ;

3.fobj = new Object ( ) ;

4.fobj. Method ( ) ;

问:这段代码中,第几行的fobj 符合垃圾收集器的收集标准?

答:第3行。因为第3行的fobj被赋了新值,产生了一个新的对象,即换了一块新的内存空间,也相当于为第1行中的fobj赋了null值。这种类型的题在认证0考试中是最简单的。

程序段2:

1.Object sobj = new Object ( ) ;

2.Object sobj = null ;

3.Object sobj = new Object ( ) ;

4.sobj = new Object ( ) ;

问:这段代码中,第几行的内存空间符合垃圾收集器的收集标准?

答:第1行和第3行。因为第2行为sobj赋值为null,所以在此第1行的sobj符合垃圾收集器的收集标准。而第4行相当于为sobj赋值为null,所以在此第3行的sobj也符合垃圾收集器的收集标准。

如果有一个对象的句柄a,且你把a作为某个构造器的参数,即 new Constructor ( a )的时候,即使你给a赋值为null,a也不符合垃圾收集器的收集标准。直到由上面构造器构造的新对象被赋空值时,a才可以被垃圾收集器收集。

程序段3:

1.Object aobj = new Object ( ) ;

2.Object bobj = new Object ( ) ;

3.Object cobj = new Object ( ) ;

4.aobj = bobj;

5.aobj = cobj;

6.cobj = null;

7.aobj = null;

问:这段代码中,第几行的内存空间符合垃圾收集器的收集标准?

答:第7行。注意这类题型是认证考试中可能遇到的最难题型了。

行1-3分别创建了Object类的三个对象:aobj,bobj,cobj

行4:此时对象aobj的句柄指向bobj,所以该行的执行不能使aobj符合垃圾收集器的收集标准。

行5:此时对象aobj的句柄指向cobj,所以该行的执行不能使aobj符合垃圾收集器的收集标准。

行6:此时仍没有任何一个对象符合垃圾收集器的收集标准。

行7:对象cobj符合了垃圾收集器的收集标准,因为cobj的句柄指向单一的地址空间。在第6行的时候,cobj 已经被赋值为null,但由cobj同时还指向了aobj(第5行),所以此时cobj并不符合垃圾收集器的收集标准。而在第7行,aobj所指向的地址空间也被赋予了空值null,这就说明了,由cobj所指向的地址空间已经被完全地赋予了空值。所以此时cobj最终符合了垃圾收集器的收集标准。但对于aobj和bobj,仍然无法判断其是否符合收集标准。

总之,在Java语言中,判断一块内存空间是否符合垃圾收集器收集标准的标准只有两个:

1.给对象赋予了空值null,以下再没有调用过。

2.给对象赋予了新值,既重新分配了内存空间。

最后再次提醒一下,一块内存空间符合了垃圾收集器的收集标准,并不意味着这块内存空间就一定会被垃圾收集器收集。<wbr></wbr>
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics